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We use the angular deficit scheme �V. Borrelli, F. Cazals, and J.-M. Morvan, Comput. Aided Geom. Des. 20,
319 �2003�� to determine the distribution of Gaussian curvature in developable cones �d-cones� �E. Cerda, S.
Chaieb, F. Melo, and L. Mahadevan, Nature �London� 401, 46 �1999�� numerically. These d-cones are formed
by pushing a thin elastic sheet into a circular container. Negative Gaussian curvatures are identified at the rim
where the sheet touches the container. Around the rim there are two narrow bands with positive Gaussian
curvatures. The integral of the �negative� Gaussian curvature near the rim is almost completely compensated by
that of the two adjacent bands. This suggests that the Gauss-Bonnet theorem which constrains the integral of
Gaussian curvature globally does not explain the spontaneous curvature cancellation phenomenon �T. Liang
and T. A. Witten, Phys. Rev. E 73, 046604 �2006��. The locality of the compensation seems to increase for
decreasing d-cone thickness. The angular deficit scheme also provides a way to confirm the curvature cancel-
lation phenomenon.
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I. INTRODUCTION

Over the past few years, there has been a marked and still
increasing interest in the geometrical and mechanical prop-
erties of developable cones �d-cones� �1� illustrated in Fig. 1.
Owing to the interplay of bending and stretching energy,
d-cones offer an especially simple example of focusing of
energy. Such interplay of energies is observed in a wide
range of systems, such as the wrinkle-to-fold transition of a
thin elastic membrane supported on a softer substrate upon
compression �2� and curvature condensation in an elastic
shell �3�. Several puzzles regarding the scaling of focusing in
d-cones remain unresolved �4�. Chief among these is the ob-
served vanishing of mean curvature at the supporting rim of
the d-cone. This paper investigates the possible role of the
Gauss-Bonnet theorem �5� in explaining this vanishing phe-
nomenon.

In principle the shape of a d-cone, including the focusing
phenomena noted above, may be found by solving the Föppl-
von Kármán equations describing large deflections of thin
plates �6,7�. Cerda and Mahadevan �8� analyzed the geom-
etry of a single d-cone formed by pushing a thin elastic cir-
cular sheet into a cylindrical frame by applying a centered
transverse force directed along the axis of the cylinder, in the
limit of pure bending. They obtained the shape of the d-cone
by minimizing the bending energy and showed that the ap-
erture angle of the buckled part has a universal value of 139°
and that the sheet exerts a concentrated point force to the
frame at the two take-off points where the sheet bends away
from the frame. This finding was confirmed by Liang and
Witten �9�.

These authors �10� also uncovered a striking spontaneous
curvature cancellation phenomenon as noted above. Al-
though the ideal shape of a d-cone has zero radial curvature
Crr, where r and � are defined as radial and angular compo-
nents in the material coordinate system, the real shape must
have nonzero radial curvature at the rim demonstrated in Fig.
2. The localized force requires an outward radial curvature of

the surface, so that the surface elements at the frame may
maintain equilibrium. As the thickness of the elastic sheet
goes to zero, they found that, within the numerical accuracy,
the radial curvature Crr and the azimuthal curvature C�� are
equal and opposite at the rim, so that the mean curvature,
defined as �Crr+C��� /2, virtually vanishes there. Although it
arises from mechanical equilibrium, the phenomenon is
purely geometric: it does not involve material parameters
�4,10�. The Föppl-von Kármán equations must be able to
account for the cancellation effect, but this has not been done
yet.

Any outward radial curvature Crr combined with the in-
ward azimuthal curvature C�� necessarily creates a nonzero
Gaussian curvature K=CrrC��. The vanishing of mean cur-
vature means that K at the rim approaches a nonzero constant
as the thickness of the sheet goes to zero. This contrasts with

FIG. 1. �Color online� A typical simulated d-cone formed by
pushing the center of a hexagonal elastic sheet O against a cylin-
drical container with force F. It has side length l=60a, container
radius R=38a, deflection �=0.095, and thickness h=0.102a, where
a is the lattice spacing. OP is one boundary of the 60° sector op-
posite to the buckled region. Gaussian curvatures are integrated
over the shaded region in Sec. III. The cylinder is represented by a
circular potential shown in Sec. II.
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the overall behavior of thin sheets, which approach the iso-
metric developable shape for which K must go to zero.

The vanishing mean curvature at the rim amounts to a
nonlocal geometrical constraint. It is nonlocal because it de-
pends on the overall geometry of the sheet. The curvature
does not vanish when one modifies this geometry by cutting
the sheet radially or by replacing the flat sheet with a cone
�10�. Given the importance of nonlocal geometry, it is natural
to look for a connection with the main known geometric
constraint on curvature, namely, the Gauss-Bonnet theorem.
This theorem states that �5� the integral of Gaussian curva-
ture over a region M of a surface is related to the integral of
the geodesic curvature �g over the boundary of that region
through �MKdA+��M�gds=2�. The geodesic curvature for a
point on a curve lying on a surface is defined as the curvature
of the orthogonal projection of the curve onto the tangent
plane to the surface at the point. As noted below, there is an
exact counterpart of the theorem for polyhedral surfaces.

The Gauss-Bonnet theorem implies that any region of net
negative Gaussian curvature, such as the d-cone rim, must be
compensated by a region of positive curvature elsewhere in
the surface or a change in the boundary integral. Our aim in
this paper is to determine where the rim curvature is actually
compensated. Since the vanishing mean curvature is the re-
sult of global forces in the sheet, it would be natural to find
that the rim Gaussian curvature is compensated by positive
Gaussian curvature concentrated in the core region. Such a
nonlocal compensation arises, for example, if one pushes an
unstretched flat thin sheet in the center to cause small deflec-
tions, while its edges are fixed. In that case, positive Gauss-
ian curvature appears in the central region around the forcing
point, and the compensating negative Gaussian curvature ap-
pears mainly near the constrained boundary of the sheet
where the point force is compensated.

These Gauss-Bonnet integrals are expected to be influ-
enced by the thickness h of the sheet. As this thickness goes
to zero relative to the size R of the container, the sheet ap-
proaches the isometric state in which the energy penalty for
stretching becomes arbitrarily large. In this limit the Gauss-
ian curvature must approach zero at almost every point since

Gaussian curvature entails stretching �11�. Thus, the negative
contribution to the Gauss-Bonnet integral near the rim must
go to zero. Although this negative contribution becomes
small, it must nevertheless be compensated somewhere on
the surface. The compensation could occur far from the rim
or close to it. We may investigate this question by evaluating
the integral of K in a band near the rim. If the negative
region near the rim is nearly compensated by a positive re-
gion within the band, then �bandK��band�K�. If instead the
compensation occurs largely outside the band, then
�bandK /�band�K� remains finite as the thickness goes to zero.

Our numerical study reported below finds that the rim
Gaussian curvature is compensated locally, not globally.
There is a narrow annulus near the rim where the Gauss-
Bonnet integral nearly vanishes due to nearly cancelling
positive and negative contributions. There is an analogous
local region around the core. The locality appears to increase
for decreasing membrane thickness. Our methods allow us to
confirm the vanishing-mean-curvature phenomenon using
the Gaussian curvatures. The numerical models we used are
presented in Sec. II. In Sec. III, we describe our numerical
findings in detail. We also contrast the locality seen in
d-cones with the behavior seen in the minimal ridge �12�. In
Sec. IV we discuss limitations and implications of our find-
ings.

II. NUMERICAL METHODS

A. Numerical model

We model an elastic sheet by a triangular lattice of springs
of unstretched length a and spring constant k after Seung and
Nelson �13�. Bending rigidity is introduced by assigning an
energy of J�1− n̂1 · n̂2� to every pair of adjacent triangles with
normals n̂1 and n̂2. When strains are small compared to unity
and radii of curvature are large compared to the lattice spac-
ing a, this model is equivalent to an elastic sheet of thickness
h=a�8J /k made of an isotropic homogeneous material with
bending modulus �=J�3 /2, Young’s modulus Y =2ka /h�3,
and Poisson’s ratio �=1 /3. The lattice spacing a is set to be
1. The shape of the sheet in our simulation is a regular hexa-
gon of side length Rp. The typical value of Rp is 60a, as
indicated in Fig. 1.

To obtain a single d-cone shape, we need to simulate the
constraining container rim and pushing force. The rim lies in
the x-y plane and is described by the equation x2+y2=R2,
where R is the radius of the container. The deflection of the
sheet is defined as ��d /R, where d is the distance by which
the center of the sheet has been pushed into the container. A
d-cone with deflection � touches the container at distance
R�1+�2 away from the apex. For each d-cone, we define a
constant K0 as K0= �� / �R�1+�2��2, where � / �R�1+�2� is the
azimuthal curvature C�� of a cone with opening angle
2 tan−1�d /R� at r=R�1+�2. In a real d-cone, K0 is slightly
different from the square of the azimuthal curvature at the
rim due to lattice effect and the finite thickness h of the
sheet. C��

2 at the rim should approach K0 as h goes to zero.
The point force at the center of the sheet is implemented by
introducing a repulsive potential of the form
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FIG. 2. �Color online� Top: the radial profile of the d-cone along
OP shown in Fig. 1. The slope of the fitted line is −0.092. Bottom:
the residual plot of difference between the data points and the fitted
line. This plot clearly shows that radial curvatures are not zero,
especially near the rim where �x2+y2=38.
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Uforce�x1,y1,z1� = − F��z1 + a�G�x1,y1�� .

Here x1, y1, and z1 are the coordinates of the lattice point in
the center, F is the magnitude of the pushing force, and the
function G�x1 ,y1� is given by

G�x1,y1� = 	�1 + �x1/	�2��1 + �y1/	�2�
−1

where 	 is a constant of order 0.1a. This G�x1 ,y1� is intro-
duced to make sure that when the sheet is being pushed
the lattice point in the center does not stray away from the
axis of the cylindrical container, i.e., �x1 ,y1���0,0�. The
constraining rim is implemented by a potential of the form
Urim=�Cp / ���xi

2+yi
2−R�2+zi

2�4, where Cp is a constant and
the summation is over all lattice points with coordinates
�xi ,yi ,zi�. The value of Cp is chosen, so that the shortest
distance between the lattice points and the rim is close to one
lattice spacing.

The conjugate gradient algorithm �14� is used to minimize
the total elastic and potential energy of the system as a func-
tion of the coordinates of all lattice points. This model faith-
fully represents continuum sheets in our thickness range pro-
vided that the deflection � is below 0.25 �10�. � is between
0.09 and 0.15 in our simulations.

B. Evaluation of curvatures

There are two ways to determine the curvatures. One way,
denoted as scheme 1, is to obtain the curvature tensor from
each triangle in the sheet. Once the curvature tensor is
known, Gaussian and mean curvatures are the determinant
and the average of the diagonal elements of the tensor, re-
spectively. This scheme presumes that the curvature tensor is
constant across each triangle. We calculate it following �15�
using the relative heights of the six vertices of the given
triangle and its three adjoining triangles.

Gaussian curvatures can also be obtained by using the
angular deficit scheme �16�, denoted as scheme 2, which is
based on the Gauss-Bonnet theorem. This scheme approxi-
mates the Gaussian curvature of a smooth surface S from the
angular deficit of an inscribed polyhedral surface. The angu-
lar deficit of a vertex of a polyhedron is the amount by which
the sum of the angles of the faces at the vertex falls short of
2�. Let p be a vertex of a polyhedral surface and let its
nearest neighbors be pi , i=1, . . . ,n in clockwise direction. In
triangle ppipi+1, let 
i denote the angle at p, i.e., �pippi+1,
with pn+1= p1. The angular deficit at p is thus given by
2�−�i=1

n 
i. In our equilateral triangular lattice model, if a
vertex p is not on the edge of the polyhedral surface, then
n=6, and the angular deficit and the Gaussian curvature K of
the smooth surface S at p satisfy

�3

2
a2K = 2� − �

i=1

6


i = �
i=1

6 �

3
− 
i� �1�

in the limit of small lattice spacing relative to the radius of
curvature �16�. Since angular deficits can be easily calculated
in our triangular lattice model, this is a convenient way to
evaluate Gaussian curvatures. For a vertex p on the edge,
n=3 or 4. The angular deficit at p is ��� /3−
i� where we
restrict the angles to those subtending the sheet. After this

adjustment, the sum of the angular deficits over all the ver-
tices on the sheet is equivalent to the sum of angular deficits
over all the triangles and should be exactly zero. In our simu-
lation, the magnitude of this sum is on the order of 10−10,
which is consistent with zero given our numerical roundoff
errors.

Equation �1� can be seen as the counterpart of the Gauss-
Bonnet theorem on smooth surface for polyhedral surfaces.
In the polyhedral case, the Gaussian curvature of the surface
is concentrated on the vertices. It is zero on faces and edges.
By approximating the polyhedron by a sequence of smooth
surfaces, one verifies that K consists of �-function contribu-
tion at each vertex j each being equal to its angular deficit:
K�r��=� j��i�� /3−
ij���2�r�−r� j�. This special case of the
Gauss-Bonnet theorem states that the sum of the angular
deficits over all the vertices of a polyhedron is 2��, where �
is the Euler characteristic of the polyhedron. For example, if
a polyhedron is homeomorphic to a sphere, then its Euler
characteristic �=2 and the total angular deficits of all its
vertices is 4�. So Eq. �1� simply states that, in our regular
triangular lattice, the Gaussian curvature of a smooth surface
can be approximated by the normalized Gaussian curvature
of the discrete lattice. There is great temptation to generalize
this to other kinds of lattices, but it is only true when the
geometry of the lattices is precisely controlled �16�.

In our simulations schemes 1 and 2 give consistent values
everywhere on the d-cone except in the core region where
the high curvatures invalidate the smoothness assumption of
scheme 1. All Gaussian curvatures presented in subsequent
sections are those of our polyhedral surface determined by
scheme 2, the robustness and accuracy of which have been
tested extensively �16–18�.

III. RESULTS

Numerically, Fig. 3 shows the Gaussian curvature profiles
along a radial line OP that is 5� /6 away from the symmetri-
cal axis of the buckled region as indicated in Fig. 1. Negative
Gaussian curvatures are observed around r=38a in the ma-
terial coordinate, where the sheet touches the confining rim,
just as stated in the Introduction. This negative Gaussian
curvature decays as one moves inward or outward from the
rim, but the decay is not monotonic. It first goes to zero and
then turns positive before approaching zero again. As ex-
pected, Gaussian curvatures change very dramatically in the
core region.

The existence of two regions with positive Gaussian cur-
vatures around the contact region seems to indicate that the
negative Gaussian curvatures in the contact region is com-
pensated locally. To test this, on the d-cone with thickness
h=0.102a we integrate the Gaussian curvature over a band
within the unbuckled region shown as the shaded region in
Fig. 1. The results are as follows:

�
�=5�/6

7�/6 �
r=20a

59a

K��,r�rdrd� = − 5.5  10−5, �2�

�
�=5�/6

7�/6 �
r=20a

59a

�K��,r��rdrd� = 2.8  10−3. �3�

These integrals of the Gaussian curvature are two orders of
magnitude smaller than the integrals of the absolute value of
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the Gaussian curvature, which means that the negative
Gaussian curvature at the rim is effectively compensated by
the positive Gaussian curvature close to the rim, i.e., the
Gaussian curvature is compensated locally.

By comparing the radial profiles of the Gaussian curva-
ture in Fig. 3, one observes that the negative Gaussian cur-
vature at the rim decays to zero within a shorter distance on
the thinner d-cone. Also, on the thinner d-cone the range of
two regions of positive Gaussian curvature is correspond-
ingly smaller. This suggests that the locality of the Gaussian
curvature compensation increases as the thickness of the
d-cone decreases.

The local compensation of Gaussian curvature applies
not only to the unbuckled region, but also to the whole
d-cone. We divide a d-cone into circular bands with each
band Aj containing lattice points that satisfy �j−1��r� j
�j=1, . . . ,61�, where r is the material distance from the lat-
tice point to the center of the d-cone. Then, within each band
j, we integrate the Gaussian curvature and denote the integral
as � jK. This � jK is plotted against j in Fig. 4. From Fig. 4 we
can roughly decompose the d-cone into three major regions:
the core region with 0�r�20a, the rim region with 20a
�r�50a, and the edge region with 50a�r�60a where the
integrals are primarily contributed by the buckled region.

In the core region, we have

�
�=0

2� �
r=0

20a

K��,r�rdrd� = 2.5  10−4, �4�

�
�=0

2� �
r=0

20a

�K��,r��rdrd� = 1.0  10−1, �5�

and, in the rim region,

�
�=0

2� �
r=20a

50a

K��,r�rdrd� = − 1.5  10−3, �6�

�
�=0

2� �
r=20a

50a

�K��,r��rdrd� = 2.7  10−2. �7�

These integrals of the Gaussian curvature are at least one
order of magnitude smaller than the integrals of the absolute
value of the Gaussian curvature in both the core and the rim
regions, which again suggests that overall the Gaussian cur-
vature is compensated locally.

Through Gaussian curvatures, we can also confirm the
vanishing-mean-curvature phenomenon. The vanishing of
mean curvature �Crr+C��� /2 means that the Gaussian curva-
ture K remains equal to C��

2 . Since, as stated in Sec. II, C��
2 at

the rim approaches the constant K0 as the thickness h of the
sheet goes to zero, the vanishing of the mean curvature
would further imply that, at the limit h=0, K=K0 at the rim.
In Fig. 5, there is a clear trend that K /K0 approaches 1 as h
goes to zero. This suggestive and limited evidence supports
the stronger evidence of vanishing mean curvature in �10�.

It is natural for Gaussian curvature imposed in some re-
gion of a thin sheet to be compensated nearby. The Gauss
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FIG. 3. �Color online� Left:
density plot of the Gaussian cur-
vature K in the d-cone shown in
Fig. 1. The point P is at the lower
left corner. The Gaussian curva-
ture at each point is indicated by
the scale at right. White areas in-
dicate off-scale positive or nega-
tive values of K. Right: the radial
profiles of K as a function of r for
two different values of thickness
h. K is normalized by K0, which is
defined in Sec. II.
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FIG. 4. �Color online� The integral of Gaussian curvature � jK
within each band Aj as a function of j, where j represents the
material distance from band Aj to the center of the d-cone.
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FIG. 5. �Color online� The normalized average Gaussian curva-
ture K at the rim as a function of the thickness of the sheet h.
Gaussian curvatures at rim points were inferred from interpolation.
These interpolated K values were then averaged over the contacting
rim.
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Theorema Egregium �19� shows that the Gaussian curvature
K is a source of strain 
ij as follows:

K = 2�1�2
12 − �1�1
22 − �2�2
11.

Thus, a local region of net Gaussian curvature acts as a
source of strain which extends to the boundaries and thus
creates extensive strain energy. In principle one may avoid
this strain energy by creating compensating Gaussian curva-
ture near the region of imposed curvature. This kind of rea-
soning has been used, e.g., in Ref. �4� to explain the narrow
regions of concentrated curvature in a stretching ridge. How-
ever, we know no specific conditions that guarantee such a
compensation. Indeed, this compensation is nonlocal in some
known cases. For example, nonlocal compensation occurs in
the “minimal ridge” studied by Lobkovsky and Witten �12�.
In this example a small fraction of the Gaussian curvature
near the ridge line decays only gradually with distance away
from the ridge. Indeed, this weak Gaussian curvature decays
more slowly as the thickness goes to zero. This contrasts with
the local compensation seen in the d-cones of the present
study.

IV. DISCUSSION

We have examined the Gaussian curvature profile for the
case of the d-cone, where puzzling nonlinear and nonlocal
effects like the vanishing of mean curvature at the supporting
rim are seen. As explained above, this vanishing appears to
require nonlocal interaction between the rim region and the
rest of the system. Any nonlocal compensation of Gaussian
curvature would provide a potential mechanism for this non-

local interaction. However, our numerical analysis shows
that the rim Gaussian curvature is almost entirely compen-
sated close to the rim. Indeed, the compensation appears to
become more local as the elastic thickness of the membrane
is reduced. Similar locality appears in the compensation for
Gaussian curvature in the central region. Thus, we have
found nothing to suggest a coupling of the central region to
the rim via the Gauss-Bonnet theorem.

Our findings here are modest and limited. We have mainly
explored one structure: the d-cone, although the locality of
compensation is of general interest and relevance. Clearly
many variants of the d-cone could be studied, as well as
many other cases of point forces on curved and strained
membranes. We expect that the increased locality we ob-
served with decreasing thickness obeys some form of scaling
behavior, but we have not attempted to determine it numeri-
cally or analytically. In order to demonstrate such a scaling,
any numerical measurement would need to have a finite el-
ement scheme with a much more dynamic range than the one
used here.

The puzzle of vanishing mean curvature at the rim of a
d-cone is as open as ever after this study. Our work in prepa-
ration investigates the generality of this curvature cancella-
tion and explores simplifying assumptions to enable under-
standing.
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